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ABSTRACT 
 

Sorting algorithms have attracted a great deal of attention and study, as they have numerous applications to 

Mathematics, Computer Science and related fields. In this thesis, we first deal with the mathematical analysis of 

the Quick sort algorithm and its variants. Specifically, we study the time complexity of the algorithm and we 

provide a complete demonstration of the variance of the number of comparisons required, a known result but 

one whose detailed proof is not easy to read out of the literature. We also examine variants of Quick sort, where 

multiple pivots are chosen for the partitioning of the array. The rest of this work is dedicated to the analysis of 

finding the true order by further pair wise comparisons when a partial order compatible with the true order is 

given in advance. We discuss a number of cases where the partially ordered sets arise at random. To this end, 

we employ results from Graph and Information Theory. Finally, we obtain an alternative bound on the number 

of linear extensions when the partially ordered set arises from a random graph, and discuss the possible 

application of Shell sort in merging chains. 
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I. INTRODUCTION 

 

Sorting an array of items is clearly a fundamental 

problem, directly linked to efficient searching with 

numerous applications. The problem is that given an 

array of keys, we want to rearrange these in non-

decreasing order. Note that the order may be 

numerical, alphabetical or any other transitive 

relation defined on the keys. In this work, the 

analysis deals with numerical order, where the keys 

are decimal numbers and we particularly focus on 

Quick sort algorithm and variants of it. Quick sort 

was invented by C. A. R. Hoare. Here is the detailed 

definition. 

 

Definition:   The steps taken by the Quick sort 

algorithm are:  

 

1. Choose an element from the array, called pivot.   

2. Rearrange the array by comparing every element to 

the pivot, so all elements smaller than or equal to the 

pivot come before the pivot and all elements greater 

than or equal to the pivot come after the pivot.  

3. Recursively apply steps 1 and 2 to the sub array of 

the elements smaller than or equal to the pivot and to 

the sub array of the elements greater than or equal to 

the pivot. 

 

Note that the original problem is divided into smaller 

ones, with (initially) two sub arrays, the keys smaller 

than the pivot, and those bigger than it. Then 

recursively these are divided into smaller sub arrays 

by further pivoting, until we get trivially sorted sub 

arrays, which contain one or no elements. Given an 

array of n distinct keys A = {a1, a2, . . . , an} that we 

want to quick sort, with all the n! Permutations 

equally likely, the aim is to finding the unique 

permutation out of all the n! possible permutations, 

such that the keys are in increasing order. The 

essence of Quick sort is the partition operation, where 

by a series of pair wise comparisons, the pivot is 
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brought to its final place, with smaller elements on its 

left and greater elements to the right. Elements equal 

to pivot can be on either or both sides.  

 

As we shall see, there are numerous partitioning 

schemes, and while the details of them are not central 

to this thesis, we should describe the basic ideas. A 

straightforward and natural way uses two pointers – a 

left pointer, initially at the left end of the array and a 

right pointer, initially at the right end of the array. 

We pick the leftmost element of the array as pivot 

and the right pointer scans from the right end of the 

array for a key less than the pivot. If it finds such a 

key, the pivot is swapped with that key. Then, the left 

pointer is increased by one and starts its scan, 

searching for a key greater than 7 the pivot: if such a 

key is found, again the pivot is exchanged with it. 

When the pointers are crossed, the pivot by repeated 

exchanges will “float” to its final position and the keys 

which are on its left are smaller and keys on its right 

are greater. The data movement of this scheme is 

quite large, since the pivot is swapped with the other 

elements.  

 

A different partitioning scheme, described in is the 

following. Two pointers i (the left pointer, initially 1) 

and j (the right pointer, initially n) are set and a key is 

arbitrarily chosen as pivot. The left pointer goes to 

the right until a key is found which is greater than 

the pivot. If one is found, its scan is stopped and the 

right pointer scans to the left until a key less than the 

pivot is found. If such a key is found, the right pointer 

stops and those two keys are exchanged. After the 

exchange, both pointers are stepped down one 

position and the lower one starts its scan. When 

pointers are crossed, i.e. when i ≥ j, the final exchange 

places the pivot in its final position, completing the 

partitioning. The number of comparisons required to 

partition an array of n keys is at least n − 1 and the 

expected number of exchanges is n/6 + 5/6n.  

 

A third partitioning routine, called Lomuto‟s partition, 

this involves exactly n − 1 comparisons, which is 

clearly best possible, but the downside is the 

increased number of exchanges. The expected 

number of key exchanges of this scheme is (n−1)/2. 

 

We now consider the worst case and best case, 

analysis of Quick sort. Suppose we want to sort the 

following array, {a1 < a2 < . . . < an} and we are very 

unlucky and our initial choice of pivot is the largest 

element an. Then of course we only divide and 

conquer in a rather trivial sense: every element is 

below the pivot, and it has taken us n − 1 comparisons 

with an to get here. Suppose we 8 now try again and 

are unlucky again, choosing an−1 as pivot this time. 

Again the algorithm performs n − 2 comparisons and 

we are left with everything less than an−1. If we keep 

being unlucky in our choices of pivot, and keep 

choosing the largest element of what is left, after i 

recursive calls the running time of the algorithm will 

be equal to  

(n − 1) + (n − 2) + . . . + (n − i) comparisons, so the 

overall number of comparisons made is  

1 + 2 + . . . + (n − 1) = n · (n − 1)/ 2.  

 

Thus Quick sort needs quadratic time to sort already 

sorted or reverse-sorted arrays if the choice of pivots 

is unfortunate.  

 

If instead we always made good choices, choosing 

each pivot to be roughly in the middle of the array we 

are considering at present, then in the first round we 

make n − 1 comparisons, then in the two sub arrays of 

size about n/2 we make about n/2 comparisons, then 

in each of the four sub arrays of size about n/4 we 

make n/4 comparisons, and so on. So we make about 

n comparisons in total in each round. The number of 

rounds will be roughly log2 (n) as we are splitting the 

arrays into roughly equally-sized sub arrays at each 

stage, and it will take log2 (n) recursions of this to get 

down to trivially sorted arrays.  

 

Thus, in this good case we will need O (n log2 n) 

comparisons. This is of course a rather informal 

argument, but does illustrate that the time complexity 

can be much smaller than the quadratic run-time in 

the worst case 
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II. RANDOM SELECTION OF PIVOT 

 

The mathematical analysis of Quick sort is presented, 

under the assumption that the pivots are uniformly 

selected at random. Specifically, the major expected 

costs regarding the time complexity of the algorithm 

and the second moment are computed.  

 

Expected number of comparisons: This discussion of 

lucky and unlucky choices of pivot suggests the idea 

of selecting the pivot at random, as randomisation 

often helps to improve running time in algorithms 

with bad worst-case, but good average-case 

complexity. For example, we could choose the pivots 

randomly for a discrete uniform distribution on the 

array we are looking at each stage. Recall that the 

uniform distribution on a finite set assigns equal 

probability to each element of it. 

 

Cn is the random variable giving the number of 

comparisons in Quick sort of n distinct elements 

when all the n! Permutations of the keys are equi-

probable. It is clear that for n = 0 or n = 1, C0 = C1 = 0 

as there is nothing to sort. These are the initial or 

“seed” values of the recurrence relation for the 

number of comparisons, given in the following 

Lemma. 

 The random number of comparisons Cn for the 

sorting of an array consisting of n ≥ 2 keys, is 

given by  

 
Where Un follows the uniform distribution over the 

set {1, 2, . . . , n} and C*n-Un is identically distributed to 

Cun-1 and independent of it conditional on Un. 

 The expected number an of comparisons for 

Quick sort with uniform 

Selection of pivots is an = 2(n + 1)Hn - 4n.  

 

 Suppose that a pivot is chosen independently and 

uniformly at random from an array of n keys, in 

which Quick sort is applied. Then, for any input, 

the expected number of comparisons made by 

Randomised Quick sort is 2n loge(n) + O(n). 

Expected number of exchanges 

 

Here we consider the number of exchanges or swaps 

performed by the algorithm, which is mentioned by 

Hoare as a relevant quantity. We assume that each 

swap has a fixed cost and as in the previous section, 

we assume that the keys are distinct and that all n! 

permutations are equally likely to be the input: this in 

particular implies that the pivot is chosen uniformly 

at random from the array. 

We should specify the partitioning procedure. 

Assume that we have to sort n distinct keys, where 

their locations in the array are numbered from left to 

right by 1,2,3,......, n. Set two pointers i <- 1 and j <- 

n-1 and select the element at Location n as a pivot. 

First, compare the element at location 1 with the 

pivot. If this key is less than the pivot, increase i by 

one until an element greater than the pivot is found. 

If an element greater than the pivot is found, stop and 

compare the element at location n-1 with the pivot. If 

this key is greater than the pivot, then decrease j by 

one and compare the next element to the pivot. If an 

element less than the pivot is found, then the j 

pointer stops its scan and the keys that the two 

pointers refer are exchanged. Increase i by one, 

decrease j by one and in the same manner continue 

the Scanning of the array until i>= j. At the end of the 

partitioning operation, the pivot is placed in its final 

position k, where 1<= k <=n, and Quick sort is 

Recursively invoked to sort the sub array of k- 1 keys 

less than the pivot and the sub array of n- k keys 

greater than the pivot. 

Note that the probability of a key being greater than 

the pivot is (n-k)/(n-1) 

The number of keys which are greater than pivot, and 

were moved during Partition is 

                                     ((n-k)/(n-1)).(k-1) 

Therefore, considering also that pivots are uniformly 

chosen and noting that we have to count the final 

swap with the pivot at the end of partition operation, 

we obtain 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com)  712 

 

III. DIVIDE AND CONQUER RECURRENCES 

 

We have computed the mean and variance of the 

number of comparisons made by Quick sort that 

mainly contribute to its time complexity. Because of 

the simple structure of the algorithm (dividing into 

smaller sub problems) we can in fact approach many 

other related problems in the same spirit. Let F (n) 

denote the expected value of some random variable 

associated with randomised Quick sort and T(n) be 

the average value of the “toll function”, which is the 

needed cost to divide the problem into two simpler 

sub problems. Then F (n) is equal to the contribution 

T(n), plus the measures required sort the resulting sub 

arrays of (i-1) and (n-i) elements, where the pivot i 

can be any key of the array with equal probability. 

 

Thus, the recurrence relation is 

 
 

This is the general type of recurrences arising in the 

analysis of Quick sort, which can be manipulated 

using the difference method or by generating 

functions. 

 

Since an empty array or an one having a unique key is 

trivially solved, the initial values of the recurrence is 

 

                         F(0) = F(1) = 0 

 

IV. QUICK SORT ON TWO PIVOTS 

 

Along the following lines, we present a variant of 

Quick sort, where 2 pivots are used for the 

partitioning of the array. Let a random permutation of 

the keys 

 

{1, 2,....., n} to be sorted, with all the n! Permutations 

equally likely and let their locations in the array be 

numbered from left to right by {1,2,......., n}. The keys 

at locations 1 and n are chosen as pivots and since all 

the n! Permutations are equally likely to be the input 

then all the (n/2) pairs are equi-probable to be 

selected as pivots. At the beginning, the pivots are 

compared each other and are swapped, if they are not 

in order. If elements i < j are selected as pivots, the 

array is partitioned into three sub arrays: one with (i-

1) keys smaller than i, a sub array of (j- i-1) keys 

between two pivots and the part of (n- j) elements 

greater than j. 

 

The algorithm then is recursively applied to each of 

these sub arrays. The number of comparisons during 

the first stage is 

 

 
for i = 1,2,3,.......,n-1, and j = i + 1,......, n. Note that in 

the specific partitioning scheme, each element is 

compared once to i and elements greater than i are 

compared to j as well. The average number of 

comparisons for the partitioning of n distinct keys 

 
V. CONCLUSION AND FUTURE DIRECTIONS 

 

The conclusions of the research and possible future 

directions are being discussed. In the first section, we 

consider the sorting of partially ordered sets and in 

the second section, the fast merging of chains. 

 

 Sorting partially ordered arrays: Central to the 

analysis of the time complexity of sorting partially 

ordered sets, was the number of linear extensions, 

as a measure of the „pre-sorted-ness‟ of the array. 

Recall that the quantity log2(n!) is the lower 

bound of comparisons needed to sort an array of n 
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keys, with no prior information. In all cases of 

partially ordered sets, the constant 1=2 log2(e) 

appeared to the asymptotic number of 

comparisons. A future direction to research might 

be the sharpening of these results. For example, 

one might ask, what is the average number of key 

exchanges or the computation of exact expected 

costs. Generalising Albert–Frieze argument and 

using entropy arguments, a new result was the 

lower bound on the number of linear extensions 

of a random graph order. However, we have seen 

that it does not directly compete the bounds of 

Alon et al., thus there is space for further 

improvement of this bound or to derivation of 

new sharper ones and this might be a suitable 

topic for further research. 

 Merging chains using Shellsort: Here, we discuss 

some preliminary ideas, that might be worthwhile 

for further study. Specifically, we propose the 

application of Shellsort for the merging of linearly 

ordered sets. Shellsort was invented by Donald 

Shell in 1959 and is based on insertion sort. The 

algorithm runs from left to right, by com paring 

elements at a given gap or increment d 2 N and 

exchanging them, if they are in reverse order, so 

in the array fa1; a2; : : : ; ang the d subarrays  

faj ; aj+d; aj+2d; : : :g, for j = 1; 2; : : : ; d are separately 

sorted. At the second pass, Shellsort runs on smaller 

increment, until after a number of passes, the 

increment becomes d = 1. This final insertion sort 

completes the sorting of the array. The sequence of 

the increments is crucial for the running time of the 

algorithm, as the pivot selection is important to 

Quicksort. Thus the application of Shellsort might 

constitute an alternative choice for the merging of 

chains. 
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