
IJSRSET1841112 | 08 June 2017 | Accepted : 25 June 2017 | May-June -2017 [(2)3: 709-713]

© 2017 IJSRSET | Volume 3 | Issue 3 | Print ISSN: 2395-1990 | Online ISSN : 2394-4099

Themed Section : Engineering and Technology

709

Different Cases of Quick Sort
Chahat Monga

1
 and Richa

2

1Guru Nanak College, Department of Computer Science and Applications, Ferozepur, Punjab, India
2Punjabi University, Department of Computer Science, Patiala, Punjab, India

ABSTRACT

Sorting algorithms have attracted a great deal of attention and study, as they have numerous applications to

Mathematics, Computer Science and related fields. In this thesis, we first deal with the mathematical analysis of

the Quick sort algorithm and its variants. Specifically, we study the time complexity of the algorithm and we

provide a complete demonstration of the variance of the number of comparisons required, a known result but

one whose detailed proof is not easy to read out of the literature. We also examine variants of Quick sort, where

multiple pivots are chosen for the partitioning of the array. The rest of this work is dedicated to the analysis of

finding the true order by further pair wise comparisons when a partial order compatible with the true order is

given in advance. We discuss a number of cases where the partially ordered sets arise at random. To this end,

we employ results from Graph and Information Theory. Finally, we obtain an alternative bound on the number

of linear extensions when the partially ordered set arises from a random graph, and discuss the possible

application of Shell sort in merging chains.

Keywords : Sorting, Pivot, Keys, Pointer

I. INTRODUCTION

Sorting an array of items is clearly a fundamental

problem, directly linked to efficient searching with

numerous applications. The problem is that given an

array of keys, we want to rearrange these in non-

decreasing order. Note that the order may be

numerical, alphabetical or any other transitive

relation defined on the keys. In this work, the

analysis deals with numerical order, where the keys

are decimal numbers and we particularly focus on

Quick sort algorithm and variants of it. Quick sort

was invented by C. A. R. Hoare. Here is the detailed

definition.

Definition: The steps taken by the Quick sort

algorithm are:

1. Choose an element from the array, called pivot.

2. Rearrange the array by comparing every element to

the pivot, so all elements smaller than or equal to the

pivot come before the pivot and all elements greater

than or equal to the pivot come after the pivot.

3. Recursively apply steps 1 and 2 to the sub array of

the elements smaller than or equal to the pivot and to

the sub array of the elements greater than or equal to

the pivot.

Note that the original problem is divided into smaller

ones, with (initially) two sub arrays, the keys smaller

than the pivot, and those bigger than it. Then

recursively these are divided into smaller sub arrays

by further pivoting, until we get trivially sorted sub

arrays, which contain one or no elements. Given an

array of n distinct keys A = {a1, a2, . . . , an} that we

want to quick sort, with all the n! Permutations

equally likely, the aim is to finding the unique

permutation out of all the n! possible permutations,

such that the keys are in increasing order. The

essence of Quick sort is the partition operation, where

by a series of pair wise comparisons, the pivot is

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 710

brought to its final place, with smaller elements on its

left and greater elements to the right. Elements equal

to pivot can be on either or both sides.

As we shall see, there are numerous partitioning

schemes, and while the details of them are not central

to this thesis, we should describe the basic ideas. A

straightforward and natural way uses two pointers – a

left pointer, initially at the left end of the array and a

right pointer, initially at the right end of the array.

We pick the leftmost element of the array as pivot

and the right pointer scans from the right end of the

array for a key less than the pivot. If it finds such a

key, the pivot is swapped with that key. Then, the left

pointer is increased by one and starts its scan,

searching for a key greater than 7 the pivot: if such a

key is found, again the pivot is exchanged with it.

When the pointers are crossed, the pivot by repeated

exchanges will “float” to its final position and the keys

which are on its left are smaller and keys on its right

are greater. The data movement of this scheme is

quite large, since the pivot is swapped with the other

elements.

A different partitioning scheme, described in is the

following. Two pointers i (the left pointer, initially 1)

and j (the right pointer, initially n) are set and a key is

arbitrarily chosen as pivot. The left pointer goes to

the right until a key is found which is greater than

the pivot. If one is found, its scan is stopped and the

right pointer scans to the left until a key less than the

pivot is found. If such a key is found, the right pointer

stops and those two keys are exchanged. After the

exchange, both pointers are stepped down one

position and the lower one starts its scan. When

pointers are crossed, i.e. when i ≥ j, the final exchange

places the pivot in its final position, completing the

partitioning. The number of comparisons required to

partition an array of n keys is at least n − 1 and the

expected number of exchanges is n/6 + 5/6n.

A third partitioning routine, called Lomuto‟s partition,

this involves exactly n − 1 comparisons, which is

clearly best possible, but the downside is the

increased number of exchanges. The expected

number of key exchanges of this scheme is (n−1)/2.

We now consider the worst case and best case,

analysis of Quick sort. Suppose we want to sort the

following array, {a1 < a2 < . . . < an} and we are very

unlucky and our initial choice of pivot is the largest

element an. Then of course we only divide and

conquer in a rather trivial sense: every element is

below the pivot, and it has taken us n − 1 comparisons

with an to get here. Suppose we 8 now try again and

are unlucky again, choosing an−1 as pivot this time.

Again the algorithm performs n − 2 comparisons and

we are left with everything less than an−1. If we keep

being unlucky in our choices of pivot, and keep

choosing the largest element of what is left, after i

recursive calls the running time of the algorithm will

be equal to

(n − 1) + (n − 2) + . . . + (n − i) comparisons, so the

overall number of comparisons made is

1 + 2 + . . . + (n − 1) = n · (n − 1)/ 2.

Thus Quick sort needs quadratic time to sort already

sorted or reverse-sorted arrays if the choice of pivots

is unfortunate.

If instead we always made good choices, choosing

each pivot to be roughly in the middle of the array we

are considering at present, then in the first round we

make n − 1 comparisons, then in the two sub arrays of

size about n/2 we make about n/2 comparisons, then

in each of the four sub arrays of size about n/4 we

make n/4 comparisons, and so on. So we make about

n comparisons in total in each round. The number of

rounds will be roughly log2 (n) as we are splitting the

arrays into roughly equally-sized sub arrays at each

stage, and it will take log2 (n) recursions of this to get

down to trivially sorted arrays.

Thus, in this good case we will need O (n log2 n)

comparisons. This is of course a rather informal

argument, but does illustrate that the time complexity

can be much smaller than the quadratic run-time in

the worst case

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 711

II. RANDOM SELECTION OF PIVOT

The mathematical analysis of Quick sort is presented,

under the assumption that the pivots are uniformly

selected at random. Specifically, the major expected

costs regarding the time complexity of the algorithm

and the second moment are computed.

Expected number of comparisons: This discussion of

lucky and unlucky choices of pivot suggests the idea

of selecting the pivot at random, as randomisation

often helps to improve running time in algorithms

with bad worst-case, but good average-case

complexity. For example, we could choose the pivots

randomly for a discrete uniform distribution on the

array we are looking at each stage. Recall that the

uniform distribution on a finite set assigns equal

probability to each element of it.

Cn is the random variable giving the number of

comparisons in Quick sort of n distinct elements

when all the n! Permutations of the keys are equi-

probable. It is clear that for n = 0 or n = 1, C0 = C1 = 0

as there is nothing to sort. These are the initial or

“seed” values of the recurrence relation for the

number of comparisons, given in the following

Lemma.

 The random number of comparisons Cn for the

sorting of an array consisting of n ≥ 2 keys, is

given by

Where Un follows the uniform distribution over the

set {1, 2, . . . , n} and C*n-Un is identically distributed to

Cun-1 and independent of it conditional on Un.

 The expected number an of comparisons for

Quick sort with uniform

Selection of pivots is an = 2(n + 1)Hn - 4n.

 Suppose that a pivot is chosen independently and

uniformly at random from an array of n keys, in

which Quick sort is applied. Then, for any input,

the expected number of comparisons made by

Randomised Quick sort is 2n loge(n) + O(n).

Expected number of exchanges

Here we consider the number of exchanges or swaps

performed by the algorithm, which is mentioned by

Hoare as a relevant quantity. We assume that each

swap has a fixed cost and as in the previous section,

we assume that the keys are distinct and that all n!

permutations are equally likely to be the input: this in

particular implies that the pivot is chosen uniformly

at random from the array.

We should specify the partitioning procedure.

Assume that we have to sort n distinct keys, where

their locations in the array are numbered from left to

right by 1,2,3,......, n. Set two pointers i <- 1 and j <-

n-1 and select the element at Location n as a pivot.

First, compare the element at location 1 with the

pivot. If this key is less than the pivot, increase i by

one until an element greater than the pivot is found.

If an element greater than the pivot is found, stop and

compare the element at location n-1 with the pivot. If

this key is greater than the pivot, then decrease j by

one and compare the next element to the pivot. If an

element less than the pivot is found, then the j

pointer stops its scan and the keys that the two

pointers refer are exchanged. Increase i by one,

decrease j by one and in the same manner continue

the Scanning of the array until i>= j. At the end of the

partitioning operation, the pivot is placed in its final

position k, where 1<= k <=n, and Quick sort is

Recursively invoked to sort the sub array of k- 1 keys

less than the pivot and the sub array of n- k keys

greater than the pivot.

Note that the probability of a key being greater than

the pivot is (n-k)/(n-1)

The number of keys which are greater than pivot, and

were moved during Partition is

 ((n-k)/(n-1)).(k-1)

Therefore, considering also that pivots are uniformly

chosen and noting that we have to count the final

swap with the pivot at the end of partition operation,

we obtain

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 712

III. DIVIDE AND CONQUER RECURRENCES

We have computed the mean and variance of the

number of comparisons made by Quick sort that

mainly contribute to its time complexity. Because of

the simple structure of the algorithm (dividing into

smaller sub problems) we can in fact approach many

other related problems in the same spirit. Let F (n)

denote the expected value of some random variable

associated with randomised Quick sort and T(n) be

the average value of the “toll function”, which is the

needed cost to divide the problem into two simpler

sub problems. Then F (n) is equal to the contribution

T(n), plus the measures required sort the resulting sub

arrays of (i-1) and (n-i) elements, where the pivot i

can be any key of the array with equal probability.

Thus, the recurrence relation is

This is the general type of recurrences arising in the

analysis of Quick sort, which can be manipulated

using the difference method or by generating

functions.

Since an empty array or an one having a unique key is

trivially solved, the initial values of the recurrence is

 F(0) = F(1) = 0

IV. QUICK SORT ON TWO PIVOTS

Along the following lines, we present a variant of

Quick sort, where 2 pivots are used for the

partitioning of the array. Let a random permutation of

the keys

{1, 2,....., n} to be sorted, with all the n! Permutations

equally likely and let their locations in the array be

numbered from left to right by {1,2,......., n}. The keys

at locations 1 and n are chosen as pivots and since all

the n! Permutations are equally likely to be the input

then all the (n/2) pairs are equi-probable to be

selected as pivots. At the beginning, the pivots are

compared each other and are swapped, if they are not

in order. If elements i < j are selected as pivots, the

array is partitioned into three sub arrays: one with (i-

1) keys smaller than i, a sub array of (j- i-1) keys

between two pivots and the part of (n- j) elements

greater than j.

The algorithm then is recursively applied to each of

these sub arrays. The number of comparisons during

the first stage is

for i = 1,2,3,.......,n-1, and j = i + 1,......, n. Note that in

the specific partitioning scheme, each element is

compared once to i and elements greater than i are

compared to j as well. The average number of

comparisons for the partitioning of n distinct keys

V. CONCLUSION AND FUTURE DIRECTIONS

The conclusions of the research and possible future

directions are being discussed. In the first section, we

consider the sorting of partially ordered sets and in

the second section, the fast merging of chains.

 Sorting partially ordered arrays: Central to the

analysis of the time complexity of sorting partially

ordered sets, was the number of linear extensions,

as a measure of the „pre-sorted-ness‟ of the array.

Recall that the quantity log2(n!) is the lower

bound of comparisons needed to sort an array of n

International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 713

keys, with no prior information. In all cases of

partially ordered sets, the constant 1=2 log2(e)

appeared to the asymptotic number of

comparisons. A future direction to research might

be the sharpening of these results. For example,

one might ask, what is the average number of key

exchanges or the computation of exact expected

costs. Generalising Albert–Frieze argument and

using entropy arguments, a new result was the

lower bound on the number of linear extensions

of a random graph order. However, we have seen

that it does not directly compete the bounds of

Alon et al., thus there is space for further

improvement of this bound or to derivation of

new sharper ones and this might be a suitable

topic for further research.

 Merging chains using Shellsort: Here, we discuss

some preliminary ideas, that might be worthwhile

for further study. Specifically, we propose the

application of Shellsort for the merging of linearly

ordered sets. Shellsort was invented by Donald

Shell in 1959 and is based on insertion sort. The

algorithm runs from left to right, by com paring

elements at a given gap or increment d 2 N and

exchanging them, if they are in reverse order, so

in the array fa1; a2; : : : ; ang the d subarrays

faj ; aj+d; aj+2d; : : :g, for j = 1; 2; : : : ; d are separately

sorted. At the second pass, Shellsort runs on smaller

increment, until after a number of passes, the

increment becomes d = 1. This final insertion sort

completes the sorting of the array. The sequence of

the increments is crucial for the running time of the

algorithm, as the pivot selection is important to

Quicksort. Thus the application of Shellsort might

constitute an alternative choice for the merging of

chains.

VI. REFERENCES

[1]. Abramowitz, M. and Stegun, I. A. (1972)

"Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables."

Dover Publications.

[2]. Albacea, E. A. (2012) "Average-case analysis of

Leapfrogging samplesort." Philipp. Sci. Lett. 5

(1): 14-16.

[3]. Albert, M. and Frieze A. (1989) "Random graph

orders." Order 6 (1): 19-30.

[4]. Alon, N., Bollobás, B., Brightwell, G. and

Janson, S. (1994) "Linear Extensions of a

Random Partial Order." Ann. Appl. Probab. 4

(1): 108-123.

[5]. Bell, D. A. (1958) "The Principles of Sorting."

Comput. J. 1 (2): 71-77.

[6]. Bentley, J. L. (2000) "Programming Pearls."

Addison-Wesley Publishing, second edition.

[7]. Bentley, J. L. and McIlroy, M. D. (1993)

"Engineering a Sort Function." Software Pract.

Exper. 23 (11): 1249-1265.

[8]. Billingsley, P. (2012) "Probability and measure."

John Wiley & So., third edition.

[9]. Boyce, W. E., DiPrima, R. C. (2001)

"Elementary Differential Equations and

Boundary Value Problems." John Wiley & So.,

seventh edition.

